Buscar

Prévia do material em texto

Sistema Solar
Origem: Wikipédia, a enciclopédia livre.
	
	
Representação artística que mostra o Sol e os oito planetas do Sistema Solar: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno. Nessa imagem o tamanho dos planetas está em escala; as distâncias entre eles, não.[1]
	Localização
	Braço de Órion, na Via Láctea
	Estrela mais próxima
	Proxima Centauri (4,22 anos-luz), sistema Alpha Centauri (4.37 anos luz)
	Sistema planetário mais próximo
	Alpha Centauri (4,37 anos-luz)
	Sistema planetário
	Semieixo maior do planeta mais distante (Netuno)
	4,503 bilhões de quilômetros (30,10 UA)[nota 1]
	Distância ao Cinturão de Kuiper
	50 UA
	Número de estrelas conhecidas
	1
Sol
	Número de planetas conhecidos
	8
Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano, Netuno
	Número de planetas anões conhecidos
	5
Ceres, Plutão, Haumea, Makemake, Éris
	Número de satélites naturais conhecidos
	441 (173 de planetas,[2] 8 de planetas anões e 260 de corpos menores[3]) (em 25 de janeiro de 2015)
	Número de asteroides conhecidos
	675 716[2] (em 25 de janeiro de 2015)
	Número de cometas conhecidos
	3 321[2] (em 25 de janeiro de 2015)
	Número de satélites naturais esféricos
	19[4]
	Órbita em torno do centro galáctico
	Inclinação do plano invariável em relação ao plano galáctico
	60°
	Distância ao centro galáctico
	27 000±1 000 anos-luz
	Velocidade orbital
	220 km/s
	Período orbital
	225 - 250 milhões de anos
	Propriedades da estrela
	Tipo espectral
	G2V
	Distância da linha do gelo
	2,7 UA
	Distância da heliopausa
	cerca de 120 UA
	Raio da esfera de Hill
	de 1 a 2 anos-luz
O Sistema Solar compreende o conjunto constituído pelo Sol e todos os corpos celestes que estão sob seu domínio gravitacional. A estrela central, maior componente do sistema, respondendo por mais de 99,85% da massa total,[5] gera sua energia através da fusão de hidrogênio em hélio, dois de seus principais constituintes. Os quatro planetas mais próximos do Sol (Mercúrio, Vênus, Terra e Marte) possuem em comum uma crosta sólida e rochosa, razão pela qual se classificam no grupo dos planetas telúricos, ou rochosos. Mais afastados, os quatro gigantes gasosos, Júpiter, Saturno, Urano e Netuno, são os componentes de maior massa do sistema logo após o próprio Sol. Dos cinco planetas anões, Ceres é o que se localiza mais próximo do centro do Sistema Solar, enquanto todos os outros, Plutão, Haumea, Makemake e Éris, se encontram além da órbita de Netuno.
Permeando praticamente toda a extensão do Sistema Solar, existem incontáveis objetos que constituem a classe dos corpos menores. Os asteroides, essencialmente rochosos, concentram-se numa faixa entre as órbitas de Marte e Júpiter que se assemelha a um cinturão. Além da órbita do último planeta, a temperatura é suficientemente baixa para permitir a existência de fragmentos de gelo, que se aglomeram sobretudo nas regiões do Cinturão de Kuiper, Disco disperso e na Nuvem de Oort; esporadicamente são desviados para o interior do sistema onde, pela ação do calor do Sol, se transformam em cometas. Muitos corpos, por sua vez, possuem força gravitacional suficiente para manter orbitando em torno de si objetos menores, os satélites naturais, com as mais variadas formas e dimensões. Os planetas gigantes apresentam, ainda, sistemas de anéis planetários, uma faixa composta por minúsculas partículas de gelo e poeira.
O Sistema Solar, de acordo com a teoria mais aceita hoje em dia, teve origem a partir de uma nuvem molecular que, por alguma perturbação gravitacional, entrou em colapso e formou a estrela central, enquanto seus remanescentes geraram os demais corpos. Em sua configuração atual, todos os componentes descrevem órbitas praticamente elípticas ao redor do Sol, constituindo um sistema dinâmico onde os corpos estão em mútua interação mediada sobretudo pela força gravitacional. A sua estrutura tem sido objeto de estudos desde a antiguidade, mas somente há cinco séculos a humanidade reconheceu o fato de que o Sol, e não a Terra, constitui o centro do movimento planetário. Desde então, a evolução dos equipamentos de pesquisa, como telescópios, possibilitou uma maior compreensão do sistema. Entretanto, detalhes sem precedentes foram obtidos somente após o envio de sondas espaciais a todos os planetas, que retornam imagens e dados com uma precisão nunca antes alcançada.
Índice
  [esconder] 
· 1Formação
· 1.1Protoestrela
· 1.2Formação dos planetas e demais corpos
· 1.3Migração planetária e evolução subsequente
· 2Componentes
· 2.1Sol
· 2.2Planetas telúricos
· 2.2.1Mercúrio
· 2.2.2Vênus/Vénus
· 2.2.3Terra
· 2.2.4Marte
· 2.3Planetas gigantes
· 2.3.1Júpiter
· 2.3.2Saturno
· 2.3.3Urano
· 2.3.4Netuno/Neptuno
· 2.4Planetas anões
· 2.5Corpos menores
· 2.5.1Asteroides
· 2.5.2Objetos transnetunianos
· 2.5.3Cometas
· 2.5.4Meteoroides, meteoros e meteoritos
· 3Dinâmica
· 3.1Variações orbitais
· 3.2Efeitos das interações gravitacionais nos corpos
· 3.3Movimento aparente dos planetas
· 4Observação e exploração
· 4.1A astronomia moderna
· 4.2As grandes descobertas
· 4.3Sondas espaciais
· 5Limites e localização
· 5.1Heliosfera
· 5.2Contexto local
· 5.3Contexto galáctico
· 6Futuro
· 6.1Colisões planetárias
· 6.2Colisão galáctica
· 6.3Gigante vermelha
· 6.4Anã branca, negra e o fim do Sistema Solar
· 7Ver também
· 8Notas
· 9Referências
· 10Bibliografia
· 11Ligações externas
Formação
Ver artigo principal: Formação e evolução do Sistema Solar
As teorias que buscam explicar como ocorreu a formação do Sistema Solar começaram a surgir no século XVI, a partir da observação mais acurada do movimento dos corpos. Ao longo do tempo, algumas dessas hipóteses foram ganhando importância. Descartes, por exemplo, sugeriu que o Sol e os planetas surgiram a partir de um vórtice existente no universo primordial. A teoria da captura dos protoplanetas, por seu lado, sugere que estes corpos coalesceram de uma nuvem molecular e, posteriormente, foram capturados pela gravidade do recém-formado Sol, juntaram-se e formaram os planetas. Uma variante deste conceito propõe que os protoplanetas foram capturados pelo Sol a uma estrela de baixa densidade que passou nas proximidades.[6]
Laplace foi o responsável por desenvolver a hipótese de que o Sol teria se formado a partir de uma nuvem que girava e se contraía e, ao seu redor, os restantes materiais se condensaram nos demais corpos. Essa teoria, comumente referida como hipótese nebular, passou por algumas adaptações e se tornou a mais aceita no meio científico, especialmente após observações recentes da composição de meteoritos, que conservam características do período em que se formaram, nos primórdios do Sistema Solar.[6][7]
Protoestrela
Ver artigo principal: Protoestrela
Concepção artística da nebulosa solar. Em seu núcleo, a matéria se condensa e forma uma protoestrela, onde a temperatura é elevada, enquanto que ao redor surgem corpos menores que dão origem aos primeiros protoplanetas.
Há cerca de 4,66 bilhões de anos,[nota 1] toda a matéria que hoje forma o Sistema Solar se encontrava sob a forma de gás e poeira pertencentes a uma grande nebulosa com extensão estimada entre cinquenta e cem anos-luz, composta sobretudo por hidrogênio e uma considerável fração de hélio, além de traços de elementos mais pesados como carbono e oxigênio e alguns compostos silicados que formavam a poeira interestelar. Em algum momento, por conta de uma provável influência externa, como uma onda de choque provocada pela explosão de uma supernova nas proximidades, uma região em seu interior começou a se tornar mais densa e, por causa da gravidade, progressivamente passou a atrair mais gás em sua direção, dando origem a um núcleo que se aquecia conforme ganhava massa.[nota 2] Esse fragmento da nebulosa apresentava um lento movimento de rotação que, enquanto se condensava, gradualmente aumentava a sua velocidade angular. Contudo, se essa velocidade se tornasse excessiva, não permitiria a formação da estrela. Por isso, de acordo com a teoria mais aceita, o gás cuja velocidade era muito elevada paraincorporar-se ao núcleo era ejetado por ação de um campo magnético que permeava a nuvem, dispersando assim boa parte do momento angular do sistema.[8][9]
Com o núcleo da nuvem cada vez mais denso, formou-se uma esfera achatada de gás com temperatura agora atingindo alguns milhares de graus Celsius, uma protoestrela, cujo diâmetro era equivalente ao da órbita atual de Mercúrio. Ao seu redor, a nuvem de gás adquiriu um formato achatado devido ao movimento de rotação, formando um disco denominado nebulosa solar, que se estendia por entre cem e duzentas unidades astronômicas.[nota 3] Ao redor do núcleo a temperatura era relativamente alta, alguns milhares de graus Celsius, ao passo que as áreas mais afastadas registravam temperaturas negativas.[10]
Um milhão de anos se passaram desde o início do colapso da nuvem, quando o protossol já havia encolhido para um raio poucas vezes maior que seu estado atual. Nessa etapa teve início uma das fases mais turbulentas de sua evolução. Em seu interior, a maior parte do gás se encontrava ionizado e a uma temperatura de cerca de cinco milhões de graus Celsius, o que, em associação com a rápida rotação da protoestrela, gerava movimentos de cargas elétricas, originando um campo magnético muito mais intenso que o atual. A instabilidade desse campo provocava violentas movimentações de gás ionizado, tanto da própria protoestrela quanto da nuvem ao seu redor, causando uma intensa variação de brilho, semelhante ao processo que se observa atualmente na estrela variável T Tauri localizada na constelação do Touro. Entre trinta e cinquenta milhões de anos depois, a temperatura no núcleo chegou a quinze milhões de graus Celsius, suficiente para dar início ao processo de fusão nuclear, caracterizando o Sol como uma estrela estável que entrou na sequência principal, convertendo hidrogênio em hélio.[nota 4][11]
Formação dos planetas e demais corpos
Ver artigo principal: Nebulosa solar
Ao mesmo tempo em que se formava a protoestrela, minúsculas partículas de poeira começaram a se fundir e a formar corpos agregados cada vez maiores, num processo que durou milhões de anos, até surgirem os primeiros objetos com dimensões quilométricas denominados planetesimais, cuja interação gravitacional começava a ser significativa. O elevado número de corpos orbitando a estrela deu início a um processo caótico de sucessivas colisões, algumas fragmentando-os novamente em poeira e pequenas partes, outras proporcionando o aumento de suas massas. Alguns deles, a essa altura, possuíam dimensões substancialmente maiores que a dos demais e a sua influência gravitacional atraía outros objetos. Tais corpos, de dimensões consideráveis, recebem a denominação de protoplanetas.[8]
Concepção artística da colisão que deu origem à Lua.
Por força da sua atração gravitacional, estes objetos não só agregaram a matéria que cruzava a sua órbita, mas também colidiram uns com os outros, por vezes fundindo-se e dando origem aos primeiros planetas. Acredita-se que Vênus e a Terra, por exemplo, resultaram da colisão de mais de dez protoplanetas cada um, mas permanece desconhecida a razão pela qual Mercúrio e Marte não incorporaram material na mesma taxa, o que determinou suas dimensões reduzidas. Durante esses impactos, imensas quantidades de energia eram liberadas, formando grandes oceanos de lava por todo o planeta.[12][13] Colisões também foram responsáveis pelo surgimento de diversos satélites naturais, dentre eles a Lua, que, de acordo com a teoria vigente, resultou dos remanescentes de um choque ocorrido há 4,44 bilhões de anos[nota 1]entre a Terra e Theia, um corpo do tamanho de Marte.[14][15] Os planetesimais restantes que não eram incorporados aos planetas colidiram entre si, deixando muitos destroços que foram varridos pela gravidade dos planetas.[8] Centenas de milhões de anos depois de o processo ter iniciado, os planetas interiores estavam praticamente formados e o vento e a radiação provenientes do Sol expulsaram as pequenas partículas ainda remanescentes da região, desacelerando o crescimento desses planetas.[16]
Enquanto esse processo transcorria no interior do Sistema Solar, nas regiões mais afastadas da estrela as temperaturas eram baixas o suficiente para permitir a formação de cristais de gelo, muito mais abundantes que os compostos silicatos predominantes nos planetas internos. No entanto, sabe-se que os planetas gigantes Júpiter e Saturno são formados sobretudo por hidrogênio e hélio, que não poderiam existir sob a forma de gelo nessa região. Por isso foram formuladas duas hipóteses para explicar a possível origem desses planetas. A primeira sugere que planetesimais formados de rocha e gelo se fundiram formando planetas com massas de dez a quinze vezes superiores à da Terra, tornando-os suficientemente massivos para atrair e manter os gases presentes na então nebulosa solar, o que justificaria a provável composição atual dos núcleos desses planetas, predominantemente rochosos. Outra teoria sugere a possibilidade de os dois maiores planetas do Sistema Solar terem sido formados diretamente da condensação da nebulosa solar, em um processo semelhante ao que deu origem ao Sol, no qual a presença da enorme quantidade de gás, poeira e gelo possibilitaram a formação de corpos com elevadas dimensões. Urano e Netuno, por sua vez, teriam surgido a partir da agregação de fragmentos de gelo presentes nas regiões mais externas, o que explicaria a fração diferenciada de compostos voláteis que formam tais planetas. Contudo, quando atingiram porte suficiente para absorver gases, tal como ocorreu com Júpiter e Saturno, a nebulosa solar já havia se dissipado, impossibilitando seu eventual crescimento.[17]
Migração planetária e evolução subsequente
Ver artigo principal: Migração planetária
De acordo com o modelo vigente da evolução das órbitas planetárias - denominado Modelo de Nice - as órbitas dos três planetas exteriores eram muito mais regulares e próximas do Sol que atualmente e, além destes, existia um enxame de rochas e gelo remanescentes da formação planetária. Sucessivas aproximações desses corpos com os planetas gigantes ocorriam, direcionando-os para dentro ou para fora do Sistema Solar. Contudo, ao desviarem um corpo em direção ao Sol, Saturno, Urano e Netuno adquiriam uma pequena aceleração em direção oposta, o que, após sucessivas interações com objetos menores, os colocou em órbitas mais distantes, caracterizando o processo de migração planetária. Júpiter, por sua vez, foi ligeiramente deslocado para uma órbita mais próxima do Sol. Então, os dois maiores planetas entraram em ressonância 1:2, ou seja, enquanto Saturno completava uma volta ao redor do Sol, Júpiter efetuava duas. A cada aproximação que ocorria entre ambos, a interação gravitacional tornava as suas órbitas mais excêntricas, sobretudo a de Saturno por este apresentar menor massa.[18]
Simulação da órbita dos planetas gigantes a) no início; b) durante o intenso bombardeio tardio (ilustra-se igualmente a eventual troca de posição entre Urano e Netuno) e c) após o processo de migração planetária. Note como os objetos além da órbita inicial de Netuno são espalhados.[19]
Essa mudança afetou a órbita dos outros dois gigantes externos, Urano e Netuno, tornando-as também mais alongadas. Netuno, então, passou a interceptar uma região povoada por rochas e gelo, dando início a um dos períodos mais violentos da história do Sistema Solar. Ao adentrar nessa região, o planeta provocou um distúrbio na órbita dos corpos menores, direcionando-os para dentro ou para fora do Sistema Solar. Muitos deles atingiram os planetas internos, durante o período denominado intenso bombardeio tardio, ocorrido há quatro bilhões de anos [nota 1] e cujas marcas ainda são evidentes na superfície da Lua e de Mercúrio. Ao longo de quinhentos milhões de anos, essa região foi completamente varrida, sendo que somente uma pequena fração dos objetos que nela existiam (estima-se 0,1%) permanece, atualmente formando o Cinturão de Kuiper e a Nuvem de Oort.[19][18]
Apesar de conseguirresponder a muitas questões que até então se colocavam, o modelo de Nice originalmente não explicava como puderam os gigantes gasosos formar-se no intervalo de tempo atualmente considerado pela comunidade científica, exigindo várias centenas de milhões de anos para lá deste. Aplicando a lógica do modelo, mas pressupondo que a nebulosa inicial seria mais densa do que a teoria original estimava, mostrou-se que a formação dos planetas exteriores no prazo indicado era exequível. Simulações de computador, respeitando o modelo de Nice, mas partindo de uma nebulosa mais densa, confirmaram a hipótese. No entanto, introduziram igualmente uma possibilidade que não havia sido equacionada: em metade das simulações efetuadas, Netuno formava-se entre Urano e Saturno, sendo progressivamente levado para uma órbita exterior a Urano. Perante a incerteza que as probabilidades registram neste aspecto particular, a hipótese da troca de posição entre os dois planetas mais exteriores mantém-se em aberto.[20][21]
Componentes
Ver também: Lista de planetas
Montagem dos maiores satélites naturais e a Terra em escala.
O Sistema Solar é constituído essencialmente pelo Sol e pelo conjunto de corpos que estão sob influência de seu campo gravitacional. Dentre estes, os oito planetas são os componentes mais massivos do sistema, divididos em planetas telúricos (os quatro menores e mais próximos do Sol, predominantemente rochosos) e gigantes gasosos (os quatro maiores e mais afastados do Sol). A maior parte exerce força gravitacional suficiente para manter uma camada de gases ao seu redor, ou seja, possuem atmosfera, e também satélites naturais orbitando-os. Enquanto a Terra e Marte apresentam somente um e dois satélites naturais respectivamente, os gigantes gasosos possuem dezenas cada um, nas mais variadas formas, composições e tamanhos. Existem ainda cinco corpos que, de acordo com os padrões da União Astronômica Internacional, se enquadram na categoria de planetas anões e que, na sua maioria, também exibem satélites naturais. Vários asteroides se fazem igualmente acompanhar por pequenas luas.[22] Os quatro planetas gigantes possuem, ainda, sistemas de anéis planetários, formados essencialmente por partículas de gelo e poeira com dimensões máximas de alguns centímetros, que orbitam o planeta no plano de seu equador.[23] Espalhados por toda extensão do Sistema Solar existem milhares de corpos menores, como asteroides e cometas, além da poeira interplanetária e de matéria proveniente do Sol que permeiam o espaço entre os corpos.[24][25][26]
Sol
Ver artigo principal: Sol
O Sol em atividade. Note a erupção liberando matéria no espaço, chamada de ejeção de massa coronal.
O componente central e principal fonte de energia do Sistema Solar, o Sol, embora seja o astro mais luminoso quando visto do nosso planeta, é uma estrela relativamente pequena e comum na Via Láctea, com um raio de aproximadamente setecentos mil quilômetros. É constituído essencialmente por hidrogênio e hélio ionizados, mantidos coesos sob forma aproximadamente esférica graças à ação da gravidade. Consequentemente, a imensa pressão e temperatura em seu núcleo são suficientes para que ocorra o processo de fusão nuclear, no qual há a conversão de núcleos de hidrogênio em núcleos de hélio e liberação de energia. A estrela emite radiação em praticamente todo o espectro eletromagnético, sobretudo na forma de luz visível.[27][28]
Dentre as camadas que compõem o Sol, o núcleo, onde ocorrem as reações de fusão, é a mais interna, atingindo uma temperatura de cerca de quinze milhões de graus Celsius. A energia produzida nessa região transfere-se para a zona de radiação, através da qual atinge a camada subsequente, denominada zona convectiva, que, por sua vez, a transporta até a fotosfera, a superfície visível do Sol por onde escapa a radiação que ilumina todo o Sistema Solar. O campo magnético da estrela faz com que surjam manchas (regiões mais escuras na fotosfera) e proeminências solares que, por sua vez, podem dar origem a uma ejeção de massa coronal. Tais eventos estão geralmente associados aos ciclos solares, cujo pico de atividade ocorre a cada onze anos. Circundando o Sol encontram-se a cromosfera e a coroa solar, duas camadas de gases que constituem a atmosfera da estrela, praticamente invisíveis por conta do ofuscamento provocado pelo brilho superficial. Dessa coroa emanam correntes de partículas eletricamente carregadas, a uma temperatura de dois milhões de graus Celsius, responsáveis pelo vento solar que se espalha com grande velocidade e atinge os confins do sistema.[28][29]
Planetas telúricos
Ver artigo principal: Planeta telúrico
Comparação de tamanho entre os planetas telúricos.
Os quatro planetas mais próximos do Sol constituem o grupo dos planetas telúricos e têm como características comuns a presença de crostas sólidas formadas sobretudo por silicatos, além de núcleos cuja composição possui elevada porcentagem de ferro. Durante o período de formação planetária, a ausência de gelo na região mais interior do sistema e a massa modesta desses corpos não favoreceram a retenção de gases da nebulosa solar, razão pela qual são essencialmente rochosos. Nenhum apresenta um sistema de anéis planetários e somente a Terra e Marte possuem satélites naturais. Mercúrio tem uma atmosfera extremamente rarefeita, em contraste com a espessa camada de gases que envolve o planeta Vênus. A atmosfera terrestre, por sua vez, possui uma composição peculiar devido à presença de seres vivos que com ela interagem, transformando-a, enquanto a de Marte mostra-se bastante rarefeita, embora seja provável que outrora tenha sido espessa o suficiente para garantir a presença de água em estado líquido.[30][31]
Mercúrio
Mercúrio fotografado pela MESSENGER.
Ver artigo principal: Mercúrio
O planeta mais próximo do Sol, que gasta somente oitenta e oito dias para completar seu período de translação, possui uma aparência acinzentada com inúmeras marcas de impactos que lembram a superfície lunar. Na topografia de Mercúrio, destacam-se as áreas planas, as crateras de impacto e as cadeias montanhosas sinuosas, formadas pela contração da crosta durante o período de resfriamento do planeta. Mercúrio possui uma atmosfera extremamente rarefeita, formada somente de partículas retidas do vento solar que logo se perdem devido à intensa radiação oriunda da estrela. Por isso, a temperatura na superfície chega a ultrapassar 420 graus Celsius durante o dia e cai drasticamente durante a noite, atingindo -180°C. Também por causa da ausência de uma atmosfera substancial que pudesse desencadear processos erosivos, conservaram-se registros dos impactos de meteoroides, asteroides e cometas que ocorreram há bilhões de anos[nota 1] e que deixaram marcas por vezes extensas, como a bacia Caloris, com mais de 1 500 quilômetros de diâmetro. Mercúrio é o segundo planeta mais denso do Sistema Solar, com um núcleo metálico cujo raio equivale a 75% do total do planeta e que é responsável pela manutenção de um fraco campo magnético. Existem evidências da presença de água sob a forma de gelo em crateras profundas nos polos norte e sul que nunca recebem a luz do Sol diretamente.[32]
Vênus/Vénus
Ver artigo principal: Vênus
O planeta Vênus.
O segundo planeta a partir do Sol possui tamanho, composição e massa similares à Terra. Contudo, o seu período de rotação é de 243 dias, superior ao tempo que Vênus leva a completar uma órbita ao redor do Sol, pelo que um dia venusiano é mais longo que um ano venusiano. Apesar de o núcleo ferroso de Vênus ser similar ao da Terra, a rotação extremamente lenta de Vênus não permite a existência de um campo magnético. A atmosfera venusiana, extraordinariamente espessa e violenta, é composta primariamente por dióxido de carbono e vapores de ácido sulfúrico na forma de nuvens permanentes que envolvem todo o planeta. Como consequência, além de uma intensa pressão atmosférica (noventa vezes superior à pressão atmosférica terrestre), ocorre um superefeito estufa que faz com que a temperatura na superfícieatinja mais de 470 graus Celsius.[33]
A cobertura permanente de nuvens impede a observação direta das características da superfície, pelo que o seu mapeamento é efetuado por meio de radar e de sondas enviadas ao planeta. Tais pesquisas sugerem que o relevo de Vênus foi alterado em quase sua totalidade por ação da atividade vulcânica entre trezentos e quinhentos milhões de anos atrás. Em seu estado atual destacam-se duas regiões elevadas, a Terra de Ishtar e a Terra de Afrodite, além dos Montes Maxwell, um maciço montanhoso onde se localiza o ponto mais alto do planeta, comparável ao Monte Everest na Terra. Na geografia do planeta são igualmente característicos diversos canais que se estendem por milhares de quilômetros, criados por fluxos de lava.[33]
Terra
Ver artigo principal: Terra
A Terra fotografada pela Apollo 17.
O maior planeta telúrico e o quinto maior do Sistema Solar, é o terceiro a contar do Sol. Seu núcleo é constituído principalmente por ferro, ao redor do qual encontra-se uma camada de rochas fundidas, por sua vez cercada por uma crosta relativamente fina e dividida em placas tectônicas em constante movimento, responsáveis pelas atividades sísmica e vulcânica na Terra. O núcleo metálico e a rotação do planeta permitem a formação de um substancial campo magnético. Com mais de setenta por cento de sua superfície coberta por água, a Terra apresenta uma peculiaridade em relação aos demais planetas, já que é o único conhecido a abrigar vida. Os seres que nele habitam influenciam a composição e a dinâmica da atmosfera terrestre, formada principalmente por nitrogênio e oxigênio. A inclinação do eixo de rotação é responsável pela ocorrência de estações que regulam o clima.[34]
Nosso planeta possui somente um satélite natural, a Lua. Como praticamente não possui atmosfera nem está sujeita a outros agentes erosivos, a superfície lunar encontra-se coberta por marcas de impacto de outros corpos na forma de inúmeras crateras. Visualmente, a Lua é dividida em duas regiões conforme sua coloração: as terras altas, geralmente mais claras, e os mares, bacias de impacto preenchidas com lava que se mostram mais escuras. O período de rotação do satélite (cerca de 27 dias) é exatamente igual ao período de translação em torno da Terra, o que faz com que a Lua tenha sempre a mesma face voltada para o planeta (fenômeno denominado rotação sincronizada). Dentre as influências que a presença da Lua provoca na Terra, pode-se ressaltar a ocorrência das marés e a estabilidade no eixo de rotação do planeta.[nota 5][35]. As primeiras sondas para explorar o satélite foram enviadas em 1959 e, dez anos depois, uma missão tripulada veio a realizar uma alunissagem, o que fez da Lua o primeiro e único corpo celeste visitado por humanos até o presente.[36]
Marte
Ver artigo principal: Marte
Marte, o planeta vermelho.
O planeta telúrico mais afastado do Sol passou a ser um mundo intrigante a partir do advento das observações telescópicas. Exibindo calotas polares variáveis e características superficiais mutantes, levantava suspeitas da possível existência de vida fora da Terra. Contudo, após o envio de sondas e exploradores robóticos, descobriu-se que Marte é um planeta desértico e não se constatou a existência de seres vivos. Entretanto, a sonda Mars Reconnaissance Orbiter revelou veios de água salgada que fluem em regiões montanhosas nos meses mais quentes do planeta, aumentando a possibilidade da existência de vida micro-orgânica.[37] Com metade do tamanho da Terra, apresenta acidentes geográficos notáveis, como o Monte Olimpo, o maior vulcão extinto do Sistema Solar, com altitude três vezes maior do que a do Monte Everest, e o Valles Marineris, um sistema de cânions que se estende por mais de três mil quilômetros na região equatorial.[38]
A atmosfera marciana, embora bem mais rarefeita do que a atmosfera terrestre, pode apresentar tempestades globais durante semanas, que levantam a poeira da superfície (rica em minérios de ferro, daí a coloração avermelhada predominante) e alteram completamente as características visuais do planeta. Por vezes formam-se nuvens de vapor de água e neblina sobre vales e crateras, provocando eventuais precipitações sob a forma de neve nas calotas polares. Evidências geológicas sugerem que Marte já foi um planeta rico em água, cuja quantidade teria sido suficiente para escavar os vales existentes atualmente, o que reforça também a possibilidade de o planeta, em determinado momento de sua história, ter abrigado alguma forma de vida. Marte possui dois satélites naturais, Fobos e Deimos, ambos de reduzidas dimensões e formato irregular, tratando-se provavelmente de asteroides capturados pela gravidade do planeta.[39][38]
Planetas gigantes
Ver também: Planeta gasoso
Os oito planetas do Sistema Solar em escala.
Os quatro maiores e mais afastados planetas do Sistema Solar formam o grupo dos gigantes gasosos, todos com dimensões consideravelmente superiores às da Terra. Seu tamanho e constituição distinguem-nos dos telúricos, pelo que também recebem a denominação de planetas jovianos, em alusão ao maior componente deste conjunto, Júpiter (ou Jovis).[40] Formados principalmente por hidrogênio e hélio além de uma pequena fração de elementos mais pesados, possuem baixa densidade. Apesar de estarem afastados do Sol, o calor irradiado de seus interiores aliado a sua composição gasosa faz com que suas atmosferas sejam extremamente espessas e turbulentas, não existindo uma superfície definida em tais corpos. Também possuem em comum um núcleo rochoso, possivelmente com dimensões comparáveis ao da Terra, que seria o componente original dos planetas antes da absorção de gases e gelo durante sua formação. Todos eles apresentam igualmente numerosos satélites naturais e sistemas de anéis, além de campos magnéticos. Os dois mais distantes do Sol, Urano e Netuno, são por vezes denominados gigantes de gelo, dada a sua composição diferenciada em relação aos outros planetas gasosos.[31][41]
Júpiter
Ver artigo principal: Júpiter
Júpiter, com a Grande Mancha Vermelha proeminente em sua parte sul. A mancha escura é a sombra projetada por Europa, um satélite natural.
O maior e mais massivo planeta do Sistema Solar exibe peculiares faixas multicoloridas criadas por fortíssimos ventos que percorrem faixas longitudinais na parte superior de sua atmosfera. Frequentemente surgem nessas bandas vórtices e sistemas de tempestades circulares, como a Grande Mancha Vermelha, uma tormenta maior que a Terra que já dura por séculos. Dentre os gases que compõem sua atmosfera, hidrogênio e hélio são os mais abundantes, seguidos por pequenas frações de vapor d'água, metano e amônia.[42] Nas camadas gasosas inferiores do planeta, a pressão atmosférica é suficiente para liquefazer o hidrogênio. Já nas camadas mais internas do planeta, o mesmo elemento adquire propriedades metálicas e se torna eletricamente condutivo, dando origem, através do fluxo de cargas elétricas, a um poderoso campo magnético cuja intensidade é vinte mil vezes superior ao que é produzido pela Terra.[43]
O número total de satélites naturais de Júpiter excede 60, sendo que os quatro maiores e mais notáveis recebem a denominação particular de luas galileanas, por ter sido Galileu Galilei quem as primeiro observou por meio de um telescópio em 1610. Numa órbita interior à dos outros três, Io é o corpo geologicamente mais ativo do Sistema Solar, com vários vulcões continuamente renovando a matéria em sua superfície.[nota 6][44] Europa atrai especial atenção devido à expectativa de que alguma forma de vida habite o imenso oceano de água em estado líquido (cujo volume pode exceder o dobro de toda a água da Terra) que se considera existir sob a camada de gelo que envolve a lua. Ganimedes, o maior satélite natural no Sistema Solar e o único que mantém seu próprio campo magnético, ultrapassa as dimensões de Mercúrio. Por fim, a superfície extremamente antiga e repleta de crateras de Calisto é uma recordação visível dos eventos que ocorreram no início da história do SistemaSolar. Outra peculiaridade desses satélites são suas interações gravitacionais; Io, por exemplo, oscila entre a atração gravitacional exercida por Júpiter e a que sofre por parte de Europa e Ganimedes. Tal como acontece com a Lua, que mostra sempre a mesma face voltada para a Terra, também as luas de Galileu apresentam uma rotação sincronizada com Júpiter, provocando o mesmo efeito. O planeta possui ainda um tênue sistema de anéis, de difícil observação por ser formado de minúsculas partículas de baixo albedo.[43][45]
Saturno
Ver artigo principal: Saturno
Saturno, com seus notáveis anéis, é o segundo maior planeta do Sistema Solar. Essa fotografia foi tirada pela sonda Cassini em 2004 enquanto orbitava o planeta.
O segundo maior planeta do Sistema Solar possui uma composição semelhante à de Júpiter, rica em hidrogênio e hélio. Sua atmosfera, em função do calor irradiado do interior de Saturno, apresenta-se em constante turbulência, com ventos de mais de 1 800 quilômetros por hora que criam bandas visíveis nas suas camadas superiores em tons de amarelo e dourado. Embora mais fraco que o de Júpiter, o campo magnético do planeta ainda é quinhentas vezes mais intenso que o terrestre. Contudo, a característica mais notável de Saturno é seu impressionante sistema de anéis, formado essencialmente por fragmentos de gelo que se espalham por faixas, com milhares de quilômetros de extensão e paralelo ao equador do planeta. Sua espessura média é de apenas dez metros, nunca excedendo 1,5 quilômetro, e a maioria dos corpos que o compõem apresentam tipicamente dimensões entre um centímetro e dez metros.[46]
Os satélites naturais de Saturno ostentam peculiaridades únicas no Sistema Solar. O maior deles, Titã, é envolvido por uma espessa atmosfera composta principalmente de nitrogênio, provavelmente similar à da Terra antes do surgimento das primeiras formas de vida. Jápeto possui um hemisfério com coloração brilhante e outro escuro, além de uma cordilheira que se estende exatamente sobre seu equador. Mimas apresenta uma cratera gigantesca resultante de um impacto que quase rompeu o satélite ao meio. Rico em gelo, Encélado mostra indícios de atividade vulcânica, com ejeções de vapor de água no hemisfério sul. No total, Saturno possui 53 satélites naturais, muitos deles descobertos somente através de sondas espaciais.[47]
Urano
Ver artigo principal: Urano
O planeta Urano.
O sétimo planeta a partir do Sol foi o primeiro a ser descoberto com o auxílio de um telescópio em 1781. À semelhança de Vênus, o sentido de rotação de Urano é retrógrado relativamente ao da maioria dos corpos do Sistema Solar. Além disso, seu eixo de rotação é extremamente inclinado, fazendo com que cada um dos polos do planeta fique diretamente voltado para o Sol durante um longo período. A atmosfera de Urano, formada principalmente de hidrogênio e hélio, além de uma pequena quantidade de metano (responsável pela coloração azul-esverdeada) e água, mostra-se dinâmica conforme as mudanças de estação do planeta. No seu interior, possivelmente se aloja uma camada líquida de água, metano e amônia. Também possui um sistema de anéis com faixas estreitas e composto por partículas escuras nos anéis mais internos e brilhantes nos mais externos.[48]
Os satélites naturais de Urano, que totalizam 27, foram designados segundo os nomes de personagens das obras de William Shakespeare e da sátira The Rape of the Lock ("O Rapto da Madeixa") de Alexander Pope, exceção à prática mais corrente de se associarem às luas nomes de figuras da mitologia greco-romana. Oberon e Titânia são os maiores corpos que orbitam o planeta, enquanto Ariel tem a superfície mais brilhante e possivelmente a mais recente dentre os satélites de Urano, com poucas crateras de impacto. Miranda, por sua vez, apresenta intrigantes cânions onde áreas cuja superfície parece antiga se estendem ao lado de outras de aspecto recente. Todos estes satélites aparentam ser formados de uma mistura entre rochas e gelo. Os demais corpos ao redor de Urano provavelmente são asteroides capturados pela gravidade do planeta.[49]
Netuno/Neptuno
Ver artigo principal: Netuno
Netuno, em imagem feita pela Voyager 2, a única sonda a visitar o planeta.
O gigante e gelado Netuno é o planeta mais afastado do Sol e foi o primeiro a ser localizado a partir de cálculos matemáticos em vez de observações regulares do céu. Sua busca foi motivada por se terem constatado irregularidades na órbita de Urano que só poderiam ser explicadas pela interação com um corpo de massa considerável ainda desconhecido. Observações subsequentes da área onde Netuno se deveria encontrar, segundo os resultados calculados, vieram comprovar a sua existência. A extremamente violenta atmosfera netuniana, com ventos cuja velocidade máxima de 1200 km/h excede nove vezes a dos mais intensos que ocorrem na Terra, apresenta relevante porcentagem de metano, responsável por sua coloração azulada. Frequentemente surgem sistemas de tempestades circulares no planeta, como a grande mancha escura, um sistema anticiclônico maior que a Terra que desapareceu alguns anos após ser fotografado pela sonda Voyager 2. Presume-se que as camadas intermediárias de Netuno sejam formadas por compostos gelados, como amônia e água, ao redor de um núcleo rochoso.[50]
Dos quatorze satélites naturais conhecidos de Netuno, o maior e mais intrigante é Tritão, que orbita o planeta em direção oposta à dos demais, o que sugere que tenha sido capturado pelo planeta no passado distante. Apesar de extremamente gelado (com temperaturas inferiores a -230 graus Celsius), apresenta formações semelhantes a gêiseres que expelem gelo da superfície a uma altura de 8 km, além de uma tênue atmosfera que, por razões desconhecidas, está se tornando mais quente. Muitas das outras luas são pequenas e escuras, razão pela qual foram descobertas somente após o envio de sondas espaciais. O sistema de anéis do planeta exibe diversas irregularidades, sendo preenchido de forma muito desigual, que não só apresentam indícios de serem recentes como também efêmeras.[50]
Planetas anões
Ver artigo principal: Planeta anão
Ceres fotografado pela sondaDawn.
Desde que foi encontrado em 1930, Plutão permaneceu sendo o nono planeta do Sistema Solar, até que a descoberta em 2005 de um novo corpo celeste, posteriormente denominado Éris, de dimensões semelhantes, colocou em xeque a definição do que de fato seria um planeta. As discussões prosseguiram até o ano seguinte, quando decidiu-se criar uma categoria distinta para esses corpos, maiores que asteroides, mas substancialmente menores que os demais planetas. Passaram a partir de então a ser denominados planetas anões e caracterizam-se por, embora sejam esféricos como um planeta, suas dimensões reduzidas tornarem-nos incapazes de varrer sua órbita, ou seja, sua força gravitacional não é suficiente para atrair corpos menores nas proximidades.[51] Atualmente encontram-se nessa categoria cinco corpos celestes,[nota 7] dentre os quais apenas um se localiza entre as órbitas de Marte e Júpiter (Ceres), enquanto os demais se encontram próximos ou além da órbita de Netuno, sendo que estes últimos recebem a denominação particular de plutinos em alusão à importância histórica do antigo planeta.[52]
O menor planeta anão e também o mais próximo do Sol, Ceres, situa-se entre as órbitas de Marte e Júpiter, numa região povoada por inúmeros corpos menores denominada Cinturão de Asteroides. Com um formato aproximadamente esférico, Ceres é visto como um planeta embrionário que não atingiu porte suficiente devido provavelmente à influência gravitacional de Júpiter. Possivelmente abriga consideráveis quantidades de água sob a forma de gelo, num manto que envolve seu núcleo denso e rochoso.[53]
Plutão fotografado pela sonda New Horizons.
Com aproximadamente dois terços do diâmetro da Lua, pensa-se atualmente que Plutão seja formado por um núcleo rochoso cercado por uma espessa camada de gelo. Sua órbita excêntrica faz com que, durante um período de vinte anos, o planeta anão fique maispróximo do Sol que Netuno, sendo então possível a formação de uma tênue e temporária atmosfera resultante da vaporização de compostos anteriormente em estado sólido. Caronte, a maior das suas cinco luas, possui quase metade do tamanho de Plutão, o que leva alguns cientistas a considerarem os dois corpos como um sistema duplo em vez de planeta anão e satélite.[54]
Éris possui dimensões ligeiramente menores que as de Plutão[nota 8] e provavelmente a mesma composição. Originalmente apelidado de Xena, o planeta anão leva mais de quinhentos anos para completar seu período de translação e tem uma pequena lua, Disnomia.[55]Makemake, menor que Éris, contém metano e etano em sua superfície, além de uma coloração avermelhada atribuída à interação desses compostos com a radiação ultravioleta do Sol.[56] E, por fim, Haumea, um planeta anão de tamanho semelhante ao de Plutão, possui um dos mais curtos períodos de rotação do Sistema Solar (menos de quatro horas), o que provocou um alongamento do seu formato, dando-lhe uma aparência similar a uma bola de futebol americano; possui dois satélites naturais, Namaka e Hiʻiaka.[57]
Corpos menores
Ver artigo principal: Corpo menor do sistema solar
Por definição da União Astronômica Internacional, todos os corpos que não se enquadram na categoria de planetas ou de planetas anões, com exceção dos satélites naturais, devem ser referidos como corpos menores do Sistema Solar.[58] Nesta classificação enquadram-se, portanto, os asteroides (concentrados sobretudo na região entre as órbitas de Marte e Júpiter), os fragmentos de gelo situados além da órbita de Netuno e os cometas, além dos incontáveis meteoroides e partículas de poeira que permeiam o espaço interplanetário.[59]
Asteroides
Ver artigo principal: Asteroide
Vesta, o segundo maior asteroide do Sistema Solar, é considerado por vezes um planeta bebê em razão de suas dimensões e sua constituição.
Considerados fragmentos remanescentes da formação do Sistema Solar, os asteroides são corpos rochosos de formato irregular cujas dimensões variam de alguns metros a algumas centenas de quilômetros de diâmetro. Apesar de estarem catalogados mais de meio milhão desses objetos, acredita-se que o número real seja muito maior, embora se estime que a massa agregada de todos eles seja inferior à da Lua. De acordo com modelos computacionais, a gravidade de Júpiter não permitiu que a matéria presente entre sua órbita e a de Marte se aglomerasse e formasse um novo planeta na região, pelo que permaneceu fragmentada e circunscrita numa zona denominada Cinturão de Asteroides. Dentre seus componentes, mais de 150 possuem satélites naturais conhecidos ou formam sistemas binários. Logo após o planeta anão Ceres, Vesta é o maior asteroide do Sistema Solar, com um diâmetro aproximado de 530 quilômetros.[60] A gravidade de Júpiter não só não permite que a distribuição de asteroides no cinturão seja uniforme, originando espaços relativamente vazios denominados Lacunas de Kirkwood,[61] como também ocasionalmente altera a órbita de alguns desses corpos, direcionando-os para o interior do Sistema Solar. Colisões de asteroides com a Terra foram responsáveis por significativas alterações na história geológica e na evolução da vida em nosso planeta.[60]
Certos grupos de asteroides compartilham a mesma órbita com um planeta, localizando-se sempre 60° à frente ou atrás nos respectivos pontos de Lagrange[nota 9] deste, formando seu grupo de troianos. Na órbita de Júpiter se encontra o mais expressivo grupo conhecido, com mais de seiscentos mil componentes (de extensão superior a um quilômetro) descobertos.[62] Netuno, Urano, Marte, Terra e Vênus também possuem troianos. O primeiro troiano da Terra, designado de 2010 TK7, foi descoberto recentemente.[61][63] Entre as órbitas de Júpiter e Netuno existem, ainda, asteroides de outra classe particular cujos componentes se denominam Centauros, que são oriundos da ejeção dos objetos do Cinturão de Kuiper durante a migração planetária. Contudo, ficam nessa região por um tempo relativamente curto, pois suas órbitas ou são alteradas pela gravidade dos planetas gigantes ou colidem com eles.[64]
Alguns dos asteroides que se encontram na zona mais interior do Sistema Solar, aquém do Cinturão de Asteroides, constituem o grupo dos Objetos Próximos da Terra (NEO, sigla de Near Earth Objects), que, como o próprio nome indica, são asteroides cuja órbita aproxima-se substancialmente do nosso planeta. Formalmente os NEO são definidos como corpos cujo periélio ocorre a menos de 1,3 unidade astronômica, e são divididos em classes de acordo com suas características orbitais. O primeiro destes objetos a ser descoberto foi o asteroide Eros, que possui cerca de 33 quilômetros de comprimento. Entretanto, 9 567 objetos já haviam sido catalogados, até fevereiro de 2013, nas vizinhanças da órbita terrestre.[61][65][66][67]
É provável que o evento de extinção em massa dos dinossauros ocorrido há 65 milhões de anos tenha sido causado pelo impacto de um asteroide com cerca de dez quilômetros de extensão, criando uma imensa cratera, o que evidencia o elevado poder de destruição de tais eventos de impacto.[68] Em fevereiro de 2013 existiam 1 376 corpos referenciados por apresentarem um possível, embora extremamente remoto, risco de colisão com a Terra.[67] Em consequência desta possibilidade diversos programas de observação, como o Lincoln Near-Earth Asteroid Research, o Near Earth Asteroid Tracking e o Lowell Observatory Near-Earth-Object Search, entre outros, fazem o monitoramento constante do céu, permitindo a descoberta de diversos corpos que possam representar uma ameaça. Para estimar a probabilidade de colisão foi criada a Escala de Turim, que varia de 0 a 10, onde o menor valor qualifica o risco como insignificante, enquanto o valor máximo representa uma colisão iminente com consequências globais.[69] No entanto, os asteroides nas proximidades também podem ser o primeiro alvo para exploração de minérios fora da Terra, já que, segundo pesquisas, possuem uma considerável quantidade de ouro, platina e outros metais raros em sua composição.[70]
Objetos transnetunianos
Comparação em escala entre oito dos maiores corpos transnetunianos e seus satélites descobertos até o presente momento, com a Terra. Os quatro corpos da primeira coluna são planetas anões (textura dos corpos menores fantasiosa).
Ver artigo principal: Objeto transnetuniano
A região do Sistema Solar além da órbita de Netuno é povoada por inúmeros corpos, designados coletivamente objetos transnetunianos, compostos essencialmente de gelo e fragmentos rochosos, que se distribuem por três regiões principais: o Cinturão de Kuiper, o disco disperso e a Nuvem de Oort.[71]
Embora possa apresentar uma certa semelhança com o Cinturão de Asteroides, o Cinturão de Kuiper (ou de Kuiper-Edgeworth) é formado por corpos constituídos por fragmentos rochosos em associação com compostos voláteis sob a forma de gelo, distribuídos a uma distância entre 30 e 55 unidades astronômicas do Sol. Foram descobertos até o presente momento milhares de objetos nessa região, mas estimativas sugerem que existam aproximadamente um trilhão[nota 1] de componentes de diâmetro superior a um quilômetro. Dentre os maiores objetos no Cinturão de Kuiper destacam-se os quatro planetas anões Plutão, Haumea, Makemake e Éris.[72][73]
Os corpos gelados que habitam o disco disperso têm em comum órbitas que, em seu ponto mais próximo, se sobrepõem à região do Cinturão de Kuiper, mas sua distância máxima do Sol é alcançada numa área ainda mais longínqua que o próprio cinturão. Tal região, assim como o Cinturão de Kuiper, é fonte provável de cometas que se desviam para as proximidades do Sol. A órbita altamente inclinada desses corpos em relação ao plano de órbita dos planetas sugere que, durante o período da migração de Netuno, as trajetórias dos objetos que se encontram atualmente nesta área tenham sido radicalmente alteradas. Alguns astrônomos consideram o disco disperso como mera região do Cinturão de Kuiper, identificandoseus componentes como objetos dispersos deste.[74] Alguns astrônomos também classificam os Centauros, que se localizam entre as órbitas dos planetas gigantes, como objetos internos do Cinturão de Kuiper, desviados para órbitas mais interiores.[75]
Em 1950, o astrônomo alemão Jan Oort propôs que alguns cometas provêm de uma vasta e extremamente distante região povoada por corpos de gelo, distribuídos numa configuração semelhante a uma concha esférica, que circunda todo o Sistema Solar. Em sua homenagem, esta foi nomeada Nuvem de Oort, encontrando-se no espaço entre cinco mil e cem mil unidades astronômicas de raio a partir do Sol. Nessa região, por conta do efeito reduzido da gravidade do astro central do Sistema Solar, a influência de outras estrelas e da própria galáxia ocasionalmente desvia alguns desses corpos em direção ao meio interestelar ou ao centro do sistema, originando, neste caso, um cometa de longo período. Estima-se que existam entre 0,1 a dois trilhões[nota 1] de corpos de gelo na Nuvem de Oort.[72][76]
Cometas
Ver artigo principal: Cometa
Cometa McNaught visto sobre o Oceano Pacífico a partir do Observatório Paranal, no Chile, quando se aproximou da Terra em 2007.
Formados principalmente por gelo (de água e gás carbônico, dentre outros) e fragmentos rochosos, os cometas são corpos oriundos das regiões longínquas do Sistema Solar, que ocasionalmente visitam as proximidades do Sol. Acredita-se que esses objetos trouxeram água e compostos orgânicos para o nosso planeta, essenciais para o surgimento das formas de vida. Classificam-se em dois grupos de acordo com seu período de translação e sua região de origem. Os cometas de curto período, cujo exemplo mais famoso é o Halley, são aqueles que levam menos de duzentos anos para completar uma volta ao redor do Sol, originando-se no Cinturão de Kuiper. Os cometas de longo período, por seu lado, provêm de uma região ainda mais distante (a Nuvem de Oort), sua passagem através do interior do Sistema Solar é imprevisível e podem levar até trinta milhões de anos para completar uma órbita, como o cometa McNaught.[77][78]
Estes corpos originalmente ocupavam órbitas em regiões extremamente frias do Sistema Solar, mas perturbações gravitacionais diversas os direcionaram para o Sol. Ao se aproximar da estrela, o intenso calor provoca a sublimação dos compostos voláteis na superfície do cometa e os gases desprendidos formam uma cauda, que se torna brilhante quando interage com o vento solar, podendo estender-se por milhões de quilômetros. Seus componentes sólidos também são ejetados pela pressão gasosa, deixando uma trilha de poeira ao longo de sua órbita. Alguns cometas atravessam o periélio a uma distância segura, sobrevivendo ao calor e à radiação intensamente emitidos pelo Sol. Outros, no entanto, têm sua estrutura interna destroçada e se rompem, liberando inúmeros pedaços de gelo que logo se vaporizam, destruindo o cometa por completo.[77][78]
Meteoroides, meteoros e meteoritos
Ver artigos principais: Meteoroide, meteoro e meteorito
Meteoro (ou estrela cadente) pertencente à chuva de meteorosPerseidas cruzando o céu. Note a coloração da luz emitida pela combustão.
Permeando o espaço interplanetário existem minúsculas partículas de poeira e numerosos corpos de dimensões consideravelmente menores que asteroides, denominados meteoroides. Frequentemente penetram na atmosfera terrestre com enorme velocidade (dezenas de quilômetros por segundo), provocando sua combustão e vaporização mas não atingindo, na maioria das vezes, a superfície de nosso planeta, caracterizando um meteoro ou, na cultura popular, estrela cadente, já que ao entrar na atmosfera deixa um intenso rastro luminoso. Esse fenômeno ocorre com relativa frequência, sendo que toda noite é possível avistar alguns meteoros. Esporadicamente a Terra intercepta regiões do espaço onde cometas e asteroides que por ali passaram deixaram uma trilha de detritos, ocasionando um surto de atividade denominado chuva de meteoros, durante a qual se podem contabilizar centenas ou até mesmo, em certos casos, milhares de meteoros por hora. [61] Grãos de poeira dispersos por todo o Sistema Solar produzem, ainda, um fenômeno conhecido como luz zodiacal, no qual a enorme quantidade dessas partículas minúsculas dispersa a luz do Sol, formando uma zona de luminosidade visível no céu ao longo do plano de órbita dos planetas, observável antes da alvorada ou após o crepúsculo.[79]
Alguns meteoroides mais densos ou de maiores dimensões eventualmente conseguem atravessar a atmosfera, mesmo que fragmentados durante o processo, e chegar à superfície terrestre, passando a ser denominados meteoritos. Sua origem pode ser diversa, derivando de cometas, asteroides ou até mesmo de Marte ou da Lua.[nota 10] São classificados segundo quatro categorias principais, de acordo com sua estrutura e composição: condritos (mais comuns), acondritos, ferrosos e ferrosos-rochosos.[80] Um caso importante aconteceu na Rússia em 1908, quando um meteoroide causou uma imensa explosão sobre a Sibéria, no que ficou conhecido como evento de Tunguska, e provocou efeitos percebidos em várias partes do mundo.[81] A queda de meteoroides em áreas povoadas é um evento extremamente raro. Contudo, um caso notável aconteceu também na Rússia em 15 de fevereiro de 2013, quando uma imensa bola de fogo cruzou o céu no sul do país e fragmentos atingiram o solo próximo à cidade de Cheliabinsk, onde as ondas de choque provocadas pela explosão quebraram os vidros das janelas e sacudiram os prédios, deixando centenas de feridos.[82]
Dinâmica
Ver também: Lista de planetas e planetas anões do Sistema Solar
Todos os planetas e demais corpos do Sistema Solar estão sob o domínio gravitacional do astro central, o Sol, razão pela qual descrevem uma órbita ao seu redor cujo formato é praticamente elíptico, conforme enunciado pelas três leis do movimento planetário de Kepler.[83] Uma grandeza denominada excentricidade define a configuração dessa elipse, que se apresenta mais achatada quando seu valor se aproxima de um (como acontece na órbita da maior parte dos cometas), ou praticamente circular quando tal número tende a zero (como é o caso da maior parte das órbitas dos planetas). Uma vez que o Sol se localiza em um dos focos dessa elipse, existe um ponto onde ocorre a máxima aproximação do corpo à estrela, o periélio, e outro oposto, em que atinge a máxima distância ao Sol, o afélio. Boa parte dos corpos do Sistema Solar, especialmente os planetas, orbita próximo a um mesmo plano denominado eclíptica, definido pelo plano de órbita da Terra, o qual se utiliza a princípio como referência para a inclinação orbital dos demais corpos. É importante notar ainda que, de acordo com a terceira lei de Kepler, o período de translação de um objeto é inversamente proporcional à distância deste objeto ao Sol, ou seja, quanto mais afastada é sua órbita, mais tempo leva para completar sua trajetória.[nota 11] Tal fato é uma consequência direta da lei da gravitação universal de Newton, que afirma que a força de atração do Sol é inversamente proporcional ao quadrado da distância, o que implica também na maior velocidade do corpo durante o periélio e o contrário no afélio.[nota 12][84] A unidade mais conveniente utilizada para medir as distâncias entre os corpos do Sistema Solar é a unidade astronômica, correspondente à medida do semieixo maior da órbita terrestre (equivalente à distância média do planeta ao Sol), cujo valor é de aproximadamente 150 milhões de quilômetros.[nota 13][85]
Alcance da órbita de alguns corpos ao Sol, bem como algumas regiões do Sistema Solar. O ponto mais próximo da barra amarela à esquerda representa o periélio, e o mais afastado, o afélio. Quanto mais alongada a faixa associada a um corpo celeste ou conjunto de objetos, maior é sua excentricidade orbital.
Tomando-se como ponto de visão a parte norte do Sistema Solar[nota 14], todos os planetas e a maioria dos demais corpos orbitam o Sol em sentido anti-horário, assim como a maior parte dos satélites naturaisao redor de seus respectivos planetas. Esse fato favorece a teoria mais aceita de formação deste sistema planetário, de acordo com a qual todos os corpos teriam se formado de uma mesma nuvem e, portanto, herdaram seu movimento.[86]
O movimento de rotação da Terra leva aproximadamente 24 horas para se completar.
Os planetas e demais objetos, inclusive o Sol, possuem ainda um movimento de rotação, isto é, giram ao redor de seu próprio eixo imaginário. Dentre os planetas, o período desse movimento varia de pouco mais de 9 horas (em Júpiter) a mais de 243 dias terrestres (em Vênus). Além disso, salvo Vênus e Urano, todos apresentam esse movimento em sentido anti-horário.[87]
Apesar de o Sol conter mais de 99% da massa do Sistema Solar, a maior parte do momento angular, que é a quantidade de movimento associada a um corpo que executa um movimento circular, está concentrada principalmente em Júpiter, que responde por mais de sessenta por cento desse movimento. De fato o momento angular do Sol é de apenas 0,3%, enquanto que os planetas gigantes respondem por mais de 99% dessa grandeza. A Terra e os outros planetas interiores têm momento angular desprezível comparado com o dos gigantes gasosos. Ainda permanece um mistério a razão pela qual o Sol perdeu seu momento angular já que, de acordo com as teorias de formação do Sistema Solar, o astro girava consideravelmente mais rápido mas, por algum motivo, perdeu uma fração significativa da energia de rotação. Acredita-se que o principal responsável por essa perda seja o vento solar que, ao libertar-se da estrela, leva consigo boa parte da energia do movimento.[88]
É importante observar que, embora a gravidade seja a força dominante no Sistema Solar, existem casos especiais em que o movimento dos corpos é determinado por outras forças adicionais. Grãos de poeira são suficientemente pequenos para serem afetados pela pressão de radiação solar, sendo literalmente varridos do sistema quando são ínfimos, de tamanho na ordem de micrômetros, ou forçados a executar órbitas espirais se um pouco maiores. Corpos cujas dimensões variam de alguns metros a poucos quilômetros, por razões diferentes, também sofrem o efeito da radiação solar, executando similarmente uma órbita espiralada.[89]
Variações orbitais
Ver artigo principal: Variação orbital
Precessão do periélio (de forma exagerada).
A gravidade dos próprios planetas, satélites e outros corpos massivos do sistema não permite que os mesmos ocupem órbitas fixas, uma vez que exercem atração entre si, o que altera sua posição no espaço. Logo, seus parâmetros orbitais, ou seja, os valores que determinam sua órbita, estão em contínua, embora lenta, mudança. Um dos efeitos notáveis dessas alterações é a precessão do periélio na órbita dos corpos, isto é, o ponto mais próximo do Sol muda a cada revolução. Outros efeitos incluem a gradual alteração da excentricidade, da inclinação orbital dos objetos e de sua obliquidade (o ângulo entre o plano de rotação e o plano da órbita de um corpo). Na Terra essas oscilações, com períodos entre dezenove (no caso da nutação) e cem mil anos (no caso do argumento do periastro), estão diretamente associadas a ciclos de mudanças climáticas notáveis.[90]
Logo, visto que o plano da órbita terrestre, a eclíptica, sofre variações, não é conveniente utilizá-lo como sistema de referência. Por isso criou-se o conceito de plano invariável, o plano imaginário perpendicular ao vetor resultante do momento angular de todos os corpos do Sistema Solar e que cruza seu baricentro. Uma vez que o movimento dos componentes do sistema não sofre nenhuma interferência externa, o vetor que determina esse plano permanece constante e independente da posição dos corpos.[91]
Até mesmo a teoria da relatividade de Einstein se mostra como um fator relevante na dinâmica dos corpos do Sistema Solar. Embora ínfima, a influência relativística é mais perceptível na órbita de Mercúrio, o planeta com maior velocidade orbital. As irregularidades detectadas na precessão de seu periélio permaneceram um mistério para o qual foram propostas diversas respostas, como a existência de Vulcano, um planeta hipotético entre Mercúrio e o Sol que nunca foi encontrado. Somente anos depois Einstein descobriu o motivo da anomalia.[90]
Embora a massa do Sol seja consideravelmente maior que a dos demais planetas, esses corpos são capazes de influenciar o movimento da própria estrela. Em razão do movimento planetário, o baricentro do Sistema Solar não se localiza exatamente no centro do Sol, mas varia de acordo com a posição dos corpos que orbitam ao seu redor. O maior dos oito planetas, Júpiter, é o principal responsável pela mudança de posição do centro de massa que, por vezes, é deslocado para fora do próprio Sol. Em conjunto, os planetas provocam puxões gravitacionais na estrela, fazendo-a oscilar ligeiramente enquanto a orbitam.[92][93]
Efeitos das interações gravitacionais nos corpos
Ver também: Campo gravitacional e Ressonância orbital
Os corpos do Sistema Solar estão sujeitos a forças gravitacionais e, uma vez que não são objetos perfeitamente rígidos, suas formas e estruturas são alteradas com esse processo. A atração gravitacional entre dois corpos, especialmente quando apresentam grande massa, dá origem à força de maré, que provém da diferença de potencial gravitacional entre pontos distintos num objeto. Além da intensidade de tal força, o grau de deformação dos corpos depende, ainda, de sua constituição interna e de sua velocidade de rotação que, quanto mais elevada, mais promove o achatamento de um objeto. A interação gravitacional desencadeia outros processos que resultam na evolução de um determinado sistema orbital, em geral planeta-satélite. Estas forças recíprocas provocam a dissipação da energia do sistema alterando, a longo prazo, a órbita do próprio satélite e a velocidade de rotação de ambos os corpos.[94]
Dependendo da distância entre o planeta e seu satélite, a força de maré pode atingir níveis dramáticos. Isso acontece quando a órbita de determinado corpo ultrapassa o limite de Roche, além do qual a força exercida pelo planeta sobre o satélite é tão grande que o último não consegue se manter coeso por sua própria força gravitacional e se desintegra. Pelo mesmo motivo, a matéria existente nessa região é incapaz de se agregar para formar um novo corpo, sendo essa a mais provável origem dos sistemas de anéis dos planetas gigantes, já que todos os anéis de Júpiter e Netuno e os principais de Urano e Saturno se encontram além desse limite. A Lua localiza-se vinte vezes mais distante que o limite de Roche no nosso planeta, mas se o ultrapassasse, a Terra possivelmente teria um anel planetário.[95][96][97]
Pluma vulcânica com 160 km (100 milhas) de altitude, resultante da erupção do vulcão Loki Patera, em Io. Esse satélite de Júpiter é um dos corpos com maior atividade vulcânica do Sistema Solar.
A ressonância orbital é um fenômeno que consiste numa relação numérica simples entre as características orbitais de um corpo relativamente a outro. Um dos exemplos mais elementares é a rotação síncrona em que o período de rotação e translação de um corpo encontram-se em ressonância 1:1, como acontece com a Lua e muitos outros satélites naturais que sempre mostram a mesma face para seu planeta. A ressonância 2:3 entre Plutão e Netuno significa que enquanto Plutão orbita o Sol duas vezes, Netuno o faz três vezes, e esta relação impede que os dois corpos se aproximem, apesar de o planeta anão cruzar a órbita do gigante gasoso. Os sistemas de satélites dos planetas gigantes são notáveis exemplos de configurações ressonantes, em que os períodos de translação de praticamente todos os maiores componentes apresentam entre si relações numéricas simples. De fato, nesses sistemas a ressonância orbital previne que os satélites entrem em órbitas caóticas, atuando, assim, como estabilizadora destas.[98][99]
O fato de tantos satélites apresentarem rotação síncrona não é mera coincidência, mas consequência da interação gravitacional decorrente do acoplamentode maré. A rotação dos dois corpos sofre pequenas variações até que se atinja a ressonância 1:1, quando o processo se completa. No sistema Terra-Lua, este processo está apenas parcialmente completo, já que somente a Lua possui rotação síncrona, ao contrário do sistema Plutão-Caronte, que sempre mostram a mesma face um para o outro.[100]
Em sistemas mais complexos, o fenômeno da ressonância orbital aliado às forças de maré provoca o aquecimento interno de um satélite natural, por fricção entre suas camadas. Tal fato deve-se ao diferencial de forças exercidas simultaneamente pelo planeta e pelos outros corpos ressonantes. Um exemplo desse fenômeno é o satélite jupiteriano Io, cujas camadas internas estão em constante atrito por conta da imensa força gravitacional do gigante gasoso em oposição à influência dos outros satélites galileanos ressonantes, com os quais ocorrem sucessivos encontros. Como resultado, o calor gerado no processo mantém uma contínua atividade vulcânica em Io, apesar do seu tamanho relativamente reduzido. Outros exemplos notáveis desse fenômeno conhecido como aquecimento de maré incluem o satélite jupiteriano Europa e a lua saturniana Encélado.[101][102]
Movimento aparente dos planetas
Ver também: Movimento aparente, movimento retrógrado aparente, e astronomia esférica
Movimento do planeta Vênus tal como é visto na Terra. A partir do nosso ponto de observação, tanto Vênus quanto Mercúrio apresentam mudanças de fases enquanto orbitam o Sol, o que resulta numa grande variação de brilho, além de diferenças de tamanho aparente.
Desde a antiguidade observou-se a existência de "estrelas errantes" que se moviam irregularmente em relação à generalidade das outras, denominadas fixas por se acreditar estarem imóveis. Sabe-se hoje que tais objetos que percorrem a esfera celeste na verdade são os cinco planetas visíveis a olho nu. Estes são classificados em inferiores e superiores de acordo com a posição de sua órbita em relação à da Terra.[103]
Mercúrio e Vênus, os planetas inferiores, são os únicos cujas órbitas se localizam mais perto do Sol que a Terra, razão pela qual se mostram sempre próximos do astro, oscilando entre os seus lados e tornando-se visíveis somente pouco antes do pôr do sol ou algumas horas antes da alvorada.[104] Por vezes esses planetas passam entre a Terra e o Sol, sendo esse momento denominado conjunção inferior. Prosseguindo sua órbita, o planeta move-se para oeste da estrela, tornando-se visível, agora, antes do nascer do sol no horizonte leste. O ângulo entre o planeta e o Sol visto da Terra (denominado elongação) sofre um acréscimo a cada dia até um certo ponto, quando ocorre a elongação máxima a oeste, altura em que aparentemente o planeta está mais afastado do Sol. Progressivamente sua elongação vai diminuindo novamente até que este passe atrás do Sol, o que caracteriza uma conjunção superior. Seguindo sua trajetória, começa então a surgir agora do lado leste da estrela, tornando-se visível logo após o pôr do sol. Mais uma vez sua elongação cresce a cada dia e atinge o valor máximo a leste. Posteriormente este ângulo volta a decrescer, até a ocorrência de uma nova conjunção inferior, repetindo-se o ciclo.[105]
De acordo com seu movimento em torno do Sol, Mercúrio e Vênus passam por um ciclo de fases, razão pela qual seu brilho e tamanho aparente variam consideravelmente consoante sua distância e posição em relação à Terra. Na conjunção inferior, por exemplo, o tamanho aparente do planeta é máximo, mas o brilho é mínimo. Por vezes o alinhamento entre o planeta, o Sol e a Terra, é perfeito, caracterizando um trânsito, ou seja, o planeta pode ser observado cruzando o disco solar. Os trânsitos de Mercúrio são relativamente comuns, mas os de Vênus são bem mais raros, sendo que o último deste século ocorreu em 2012.[106]
Movimento retrógrado aparente. Como a Terra (em azul) move-se mais rápido, cria-se a ilusão de que Marte (em vermelho) fica para trás.
Marte e os gigantes gasosos formam o grupo dos planetas superiores, aqueles cuja órbita está mais distante do Sol que a da Terra. Por consequência, nosso planeta por vezes fica entre um planeta superior e o Sol, configuração denominada oposição. Essa condição caracteriza o período mais favorável para a observação de um desses corpos celestes, uma vez que seu tamanho aparente se torna o maior possível e a face voltada para a Terra fica completamente iluminada.[107] À medida que a Terra se move, o planeta parece deslocar-se no céu seguindo a direção leste e aproximando-se do Sol, até que passa por trás da estrela, configuração que se denomina conjunção superior. Logo de seguida, surge no horizonte oeste e sua elevação (ou elongação) se torna progressivamente maior, até que novamente se posicione em oposição.[108]
Durante a maior parte desse período, os planetas superiores movem-se em direção oeste-leste no céu, descrevendo o que se denomina movimento direto. Contudo, pouco antes de alcançar a oposição, o planeta faz um movimento aparente de loop e, por um certo período, passa a se mover em direção oposta, o que caracteriza o movimento retrógrado aparente. Tal fato ocorre devido às diferenças entre as órbitas da Terra e a dos corpos mais além. Uma vez que nosso planeta possui maior velocidade orbital comparada aos planetas superiores, a mudança de posição cria a ilusão de que tais corpos estão ficando para trás, produzindo seu movimento aparente em direção oposta.[108][109]
Observação e exploração
Por milênios a humanidade não reconheceu a existência do Sistema Solar. Contudo, ainda nos séculos antes de Cristo, gregos e babilônios foram os primeiros a utilizar a matemática para tentar prever a posição das "estrelas errantes" que apresentavam um movimento irregular.[110] Embora não existam registros escritos, acredita-se terem sido os pitagóricos, durante o século V a.C., a introduzir a noção de que a Terra possuía um formato esférico e que os demais corpos orbitavam à sua volta.[111] Uma das primeiras teorias para explicar o movimento planetário foi criada pelo filósofo grego Aristóteles e propunha a existência de várias esferas cristalinas que giravam ao redor da Terra. Em cada uma delas estaria incrustado um corpo celeste, como o Sol, a Lua, os planetas e o conjunto das estrelas fixas. A última esfera seria a do "movimento primordial", cuja rotação seria transmitida de uma esfera para outra, promovendo, assim, o movimento de todos os corpos. Ajustando-se as velocidades angulares dessas esferas seria possível explicar o movimento planetário.
Esquema do modelo de epiciclos de Ptolomeu, em que o planeta girava em torno de um ponto imaginário que, por sua vez, girava em torno da Terra. Note que o centro da órbita localiza-se em um ponto imaginário chamado deferente, criado para explicar as irregularidades no movimento planetário.
Logo surgiram as incoerências na teoria, cuja solução aparente foi apresentada por Ptolomeu na sua obra Almagesto: um modelo planetário cujo centro ainda era a Terra, onde os planetas não permaneciam fixos em sua órbita mas giravam em torno de um ponto imaginário, formando um epiciclo, o que explicaria diversos aspectos observados, especialmente o movimento retrógrado aparente. Essa teoria, no entanto, ainda não era capaz de descrever com exatidão a trajetória dos planetas, pelo que passou por diversos ajustes.[112]Contudo, ainda antes de Ptolomeu, Aristarco de Samos foi o primeiro a propor que a Terra e todos os demais planetas orbitavam o Sol, embora sua ideia não tenha se popularizado.[111]
A astronomia moderna
Por mais de mil anos praticamente não houve uma evolução do conhecimento astronômico no ocidente, prevalecendo, portanto, o modelo geocêntrico. Apenas no século XVI o astrônomo polonês Nicolau Copérnico veio a publicar em seu livro Das Revoluções das Esferas Celestes que todos os planetas, inclusive a Terra, orbitavam o Sol, o que ficou conhecido como modelo heliocêntrico. Tal teoria afirmava também que somente a Lua girava ao redor do nosso planeta, que as estrelas eram objetos muitodistantes que não orbitavam o Sol e que a Terra tinha um movimento próprio de rotação que durava 24 horas, o que produzia a deslocação aparente das estrelas no céu na direção oposta. Por conseguinte, o movimento retrógrado e a alteração cíclica de brilho dos planetas foram explicados como sendo simples consequências da variação da distância entre a Terra e esses corpos à medida que seguem sua trajetória. Acredita-se que a maior parte das obras de Copérnico foi publicada somente no fim de sua vida por receio que o próprio tinha de ser ridicularizado e de suas teorias serem desaprovadas, principalmente pela Igreja Católica. Suas ideias permaneceram pouco conhecidas mesmo após cerca de cem anos de seu falecimento, quando uma sucessão de avanços científicos levou à completa descrença no modelo geocêntrico e à criação de uma visão moderna sobre a astronomia, o que ficou conhecido como Revolução Copernicana.[113]
O astrônomo dinamarquês Tycho Brahe fez importantes contribuições para o desenvolvimento da astronomia moderna. Com diversos instrumentos criados por ele, efetuou numerosas observações e reuniu dados detalhados sobre a posição dos planetas, especialmente de Marte, a partir do seu próprio observatório, Uranienborg, com uma impressionante precisão. Além disso, observou uma supernova que explodiu em 1572 e provou que ela se encontrava muito longínqua, assim como as estrelas, e demonstrou ainda que um cometa que passara em 1577 situava-se bem mais distante da Terra que a Lua, contrariando a teoria aristotélica de acordo com a qual tais corpos surgiriam a partir de fenômenos atmosféricos.[114]
Johannes Kepler era assistente de Brahe em seu observatório. O jovem astrônomo acreditava firmemente no modelo heliocêntrico, ao contrário do seu superior que temia ainda que Kepler fizesse descobertas que ofuscassem seu próprio mérito, pelo que lhe mostrava somente parte dos dados obtidos em suas observações. Visando ocupar Kepler enquanto trabalhava em suas teorias sobre o Sistema Solar, Brahe entregou-lhe todas as informações observacionais de Marte e o incumbiu da difícil tarefa de entender as irregularidades no movimento do planeta vermelho. O modelo de Copérnico previa que as órbitas eram perfeitamente circulares, mas Kepler chegou à conclusão de que isso estava errado e que, na verdade, estas eram achatadas, formando uma figura geométrica chamada elipse.[115]
As grandes descobertas
Ilustração do modelo heliocêntrico produzida em 1646 por Andreas Cellarius. Note os satélites de Júpiter (os quatro pequenos círculos em volta do planeta à direita), descobertos por Galileu, além da Lua ao redor da Terra.
Na mesma época das descobertas de Kepler, Galileu Galilei, apesar de não ter inventado o telescópio, foi o primeiro a apontá-lo para o céu, o que foi crucial para o entendimento das reais características dos corpos celestes. Olhou para o Sol (talvez o motivo pelo qual ficou cego) e viu manchas que permitiram constatar o movimento de rotação da estrela, descobriu as quatro maiores luas de Júpiter (que agora são chamadas de luas galileanas), observou as fases mutantes de Vênus e constatou que eram consequência da mudança da posição do planeta e da Terra em relação ao Sol. Olhou para a Via Láctea e concluiu que era formada por inúmeras estrelas, observou as "orelhas" de Saturno, que lhe pareciam assim devido à baixa resolução de seu telescópio e viu que a Lua não era perfeitamente lisa, mas repleta de montanhas e crateras.[116]
No mesmo ano da morte de Galileu, nasceu Isaac Newton, o cientista que viria a revolucionar o mundo da ciência ao unificar a astronomia à física. Além das três leis sobre moção dos objetos, descobriu a força que rege o movimento dos corpos no Universo: a gravidade. A grande ideia de Newton surgiu a partir da simples observação de uma maçã caindo da árvore. Estudando esse movimento, percebeu que era acelerado e que, portanto, uma força agia sobre a fruta aumentando sua velocidade durante a queda. Então, imaginou que se a árvore fosse duas vezes mais alta, a gravidade continuaria agindo sobre ela, provocando a queda da maçã em direção ao chão. Concluiu que o campo de ação dessa força provavelmente se estenderia por uma distância muito maior e chegaria até a Lua, fazendo com que o satélite natural ficasse ligado gravitacionalmente à Terra. Em seus estudos, logo chegou à conclusão de que "todo objeto no Universo atrai outro objeto com uma força que age na linha que une o centro dos dois corpos que é proporcional ao produto das massas desses dois objetos e inversamente proporcional ao quadrado da distância entre esses dois objetos", definindo a lei da gravitação universal.[nota 12][117]
A melhoria da qualidade dos equipamentos de medição e observação levou a que se obtivessem registros cada vez mais precisos que permitiam estudar em detalhes a dinâmica dos corpos do Sistema Solar. Ainda no século XVIII tentou-se estimar a distância da Terra ao Sol através da medição da paralaxe de Mercúrio e de Vênus quando estes (em ocasiões diferentes) cruzavam o disco solar. Apesar de o objetivo primário não ter sido alcançado, foi constatada uma camada brilhante ao redor de Vênus quando este se aproximava do Sol, concluindo-se que o planeta possuía uma atmosfera. Ainda no mesmo período, Edmund Halley estudou relatos de cometas passados e percebeu que os elementos orbitais de alguns deles eram muito parecidos; compreendeu que, na verdade, se tratava do mesmo corpo que orbitava o Sol, conseguindo assim prever seu retorno. Já em 1781, William Herschel encontrou um corpo celeste que pensou ser um novo cometa, constatando seu movimento ao longo de dias. Somente após algumas semanas, depois de terem sido efetuados cálculos minuciosos, houve a confirmação de que se tratava na realidade de um novo planeta, posteriormente denominado Urano. Dois anos depois Herschel descobriu dois de seus maiores satélites (Titânia e Oberon). Já no fim do século, suspeitou-se da existência de um outro planeta entre Marte e Júpiter, quando um grupo de astrônomos decidiu realizar observações sistemáticas para encontrá-lo. Por mero acaso, encontraram Ceres, o primeiro asteroide descoberto, seguido pelo asteroide Pallas pouco tempo depois, ambos de dimensões demasiado reduzidas para serem considerados planetas.[118]
Desenhos de Richard Carrington de manchas solares.
Durante a primeira metade do século XIX, as manchas solares permaneciam um enigma, imaginando-se serem buracos na fotosfera solar, mas em 1852 percebeu-se a correlação entre sua ocorrência e os distúrbios no campo magnético terrestre. Richard Carrington, em 1858, descobriu que as manchas na região equatorial da estrela moviam-se mais rápido que as de maior latitude, revelando a rotação diferencial solar. No mesmo ano, Carrington observou um intenso brilho emanando de dois locais na superfície da estrela e, três dias depois, ocorreu uma impressionante tempestade geomagnética. O estudo da composição química, não só do Sol, mas das demais estrelas e alguns outros corpos, apresentou uma grande evolução após o desenvolvimento da espectroscopia.[119]
Ainda em 1693, Halley descobriu que a Lua estava lentamente se afastando da Terra enquanto ganhava velocidade e à medida que a rotação da Terra era desacelerada. As observações de Marte mostraram as variações sazonais de suas calotas polares, das regiões escuras em sua superfície e de sua atmosfera, levando à crença de que poderia abrigar alguma forma de vida, especialmente vegetal. Através de telescópios, Júpiter revelava ser um planeta extremamente turbulento, exibindo tempestades circulares que surgiam e desapareciam com relativa frequência, excetuando a típica Grande Mancha Vermelha. Constatou-se ainda a rotação diferencial de sua atmosfera e as distintas direções dos ventos nas bandas do planeta. A partir de 1837, foram sendo descobertas novas faixas e lacunas no sistema de anéis de Saturno e sua interação com os satélites naturais do planeta. A composição dos anéis permanecia uma incógnita, propondo-se, por exemplo, que seria

Mais conteúdos dessa disciplina