Buscar

Prévia do material em texto

- **Resolução:** Determinamos os pontos de interseção das curvas dentro do intervalo 
especificado e calculamos a integral definida da diferença entre \( \sin x \) e \( \cos x \). 
 
128. **Problema:** Determine os pontos de máximos e mínimos relativos da função \( f(x) 
= \frac{2x^3 - 9x^2 + 12x - 1}{x^2 - 4} \). 
 - **Resolução:** Calculamos a derivada primeira \( f'(x) \), encontramos os pontos 
críticos e aplicamos o teste da segunda derivada para determinar a natureza dos 
extremos. 
 
129. **Problema:** Calcule a área da região limitada pelas curvas \( y = x^2 - 4x + 4 \) e \( y 
= 0 \). 
 - **Resolução:** Encontramos os pontos de interseção das curvas e calculamos a 
integral definida da função \( x^2 - 4x + 4 \) entre esses limites. 
 
130. **Problema:** Determine os pontos de interseção da reta \( y = x - 2 \) com a elipse \( 
\frac{x^2}{9} + \frac{y^2}{4} = 1 \). 
 - **Resolução:** Substituímos \( y \) na equação da elipse e resolvemos o sistema de 
equações para encontrar os pontos de interseção. 
 
131. **Problema:** Calcule o volume do sólido obtido pela rotação da região delimitada 
por \( y = \sqrt{x} \) e \( y = x \) em torno da linha \( y = 3 \). 
 - **Resolução:** Utilizamos o método dos discos ou anéis para calcular o volume 
gerado pela rotação da região entre os limites dados. 
 
132. **Problema:** Determine as assíntotas verticais, horizontais e oblíquas da função \( 
f(x) = \frac{4x^2 - 1}{x^2 - 1} \). 
 - **Resolução:** Analisamos o comportamento da função em \( x \to \pm \infty \) e em 
pontos críticos para identificar as assíntotas. 
 
133. **Problema:** Encontre a área da região delimitada pelas curvas \( y = e^x \) e \( y = 
x^2 \). 
 - **Resolução:** Determinamos os pontos de interseção das curvas e calculamos a 
integral definida da diferença entre \( e^x \) e \( x^2 \) entre esses limites. 
 
134. **Problema:** Determine os pontos de interseção das curvas \( y = e^x \) e \( y = 
\sqrt{x} \). 
 - **Resolução:** Igualamos as duas equações e resolvemos para encontrar os pontos 
de interseção. 
 
135. **Problema:** Encontre a equação da reta tangente à curva \( y = \ln x \) que passa 
pelo ponto \( (3, \ln 3) \). 
 - **Resolução:** Calculamos a derivada \( \frac{dy}{dx} = \frac{1}{x} \) e utilizamos a 
forma ponto-inclinação da equação da reta para determinar a equação da tangente. 
 
136. **Problema:** Determine os valores de \( a \) para os quais a equação \( 2x^2 + ax + 1 
= 0 \) tem raízes reais e distintas. 
 - **Resolução:** Aplicamos a condição de discriminante positivo à equação quadrática 
para encontrar os valores possíveis de \( a \). 
 
137. **Problema:** Calcule a derivada da função \( y = \ln(\sin x) \). 
 - **Resolução:** Utilizamos a regra da cadeia para derivar a função composta, onde \( 
\sin x \) é a função interna. 
 
138. **Problema:** Encontre a área da região delimitada pelas curvas \( y = \sin x \) e \( y = 
\cos x \) no intervalo \( [0, \frac{\pi}{2}] \). 
 - **Resolução:** Identificamos os pontos de interseção das curvas dentro do intervalo 
dado e calculamos a integral definida da diferença entre \( \sin x \) e \( \cos x \). 
 
139. **Problema:** Determine os pontos de máximos e mínimos relativos da função \( f(x) 
= \frac{3x^3 - 7x^2 + 6x - 1}{2x^2 - 5} \). 
 - **Resolução:** Calculamos a derivada primeira \( f'(x) \), encontramos os pontos 
críticos e aplicamos o teste da segunda derivada para determinar a natureza dos 
extremos. 
 
140. **Problema:** Calcule a área da região limitada pelas curvas \( y = \ln x \) e \( y = e^x 
\). 
 - **Resolução:** Encontramos os pontos de interseção das curvas e calculamos a 
integral definida da diferença entre \( \ln x \) e \( e^x \) dentro dos limites de integração. 
 
141. **Problema:** Determine os pontos de interseção das curvas \( y = e^x \) e \( y = 
\sqrt{x} \).

Mais conteúdos dessa disciplina